\(\int \sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2} \, dx\) [789]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 164 \[ \int \sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2} \, dx=-\frac {\sqrt {a} (2 i A-B) c^{3/2} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{f}-\frac {(2 i A-B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {B \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}{2 f} \]

[Out]

-(2*I*A-B)*c^(3/2)*arctan(c^(1/2)*(a+I*a*tan(f*x+e))^(1/2)/a^(1/2)/(c-I*c*tan(f*x+e))^(1/2))*a^(1/2)/f-1/2*(2*
I*A-B)*c*(a+I*a*tan(f*x+e))^(1/2)*(c-I*c*tan(f*x+e))^(1/2)/f+1/2*B*(a+I*a*tan(f*x+e))^(1/2)*(c-I*c*tan(f*x+e))
^(3/2)/f

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {3669, 81, 52, 65, 223, 209} \[ \int \sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2} \, dx=-\frac {\sqrt {a} c^{3/2} (-B+2 i A) \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{f}-\frac {c (-B+2 i A) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {B \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}{2 f} \]

[In]

Int[Sqrt[a + I*a*Tan[e + f*x]]*(A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

-((Sqrt[a]*((2*I)*A - B)*c^(3/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x
]])])/f) - (((2*I)*A - B)*c*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(2*f) + (B*Sqrt[a + I*a*Tan
[e + f*x]]*(c - I*c*Tan[e + f*x])^(3/2))/(2*f)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3669

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a*(c/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(a c) \text {Subst}\left (\int \frac {(A+B x) \sqrt {c-i c x}}{\sqrt {a+i a x}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {B \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}{2 f}+\frac {(a (2 A+i B) c) \text {Subst}\left (\int \frac {\sqrt {c-i c x}}{\sqrt {a+i a x}} \, dx,x,\tan (e+f x)\right )}{2 f} \\ & = -\frac {(2 i A-B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {B \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}{2 f}+\frac {\left (a (2 A+i B) c^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x} \sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{2 f} \\ & = -\frac {(2 i A-B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {B \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}{2 f}-\frac {\left ((2 i A-B) c^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2 c-\frac {c x^2}{a}}} \, dx,x,\sqrt {a+i a \tan (e+f x)}\right )}{f} \\ & = -\frac {(2 i A-B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {B \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}{2 f}-\frac {\left ((2 i A-B) c^2\right ) \text {Subst}\left (\int \frac {1}{1+\frac {c x^2}{a}} \, dx,x,\frac {\sqrt {a+i a \tan (e+f x)}}{\sqrt {c-i c \tan (e+f x)}}\right )}{f} \\ & = -\frac {\sqrt {a} (2 i A-B) c^{3/2} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{f}-\frac {(2 i A-B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{2 f}+\frac {B \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}{2 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.71 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.79 \[ \int \sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2} \, dx=\frac {2 \sqrt {a} (-2 i A+B) c^{3/2} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )+c \sqrt {a+i a \tan (e+f x)} (-2 i A+2 B-i B \tan (e+f x)) \sqrt {c-i c \tan (e+f x)}}{2 f} \]

[In]

Integrate[Sqrt[a + I*a*Tan[e + f*x]]*(A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(3/2),x]

[Out]

(2*Sqrt[a]*((-2*I)*A + B)*c^(3/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*
x]])] + c*Sqrt[a + I*a*Tan[e + f*x]]*((-2*I)*A + 2*B - I*B*Tan[e + f*x])*Sqrt[c - I*c*Tan[e + f*x]])/(2*f)

Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.36

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, c \left (i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +2 i A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}-2 A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c -2 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{2 f \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}\) \(223\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, c \left (i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +2 i A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}-2 A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c -2 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{2 f \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}\) \(223\)
parts \(\frac {A \left (-i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}+a c \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right )\right ) \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, c}{f \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}+\frac {B \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, c \left (i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c -i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+2 \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{2 f \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}}\) \(277\)

[In]

int((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(I*tan(f*x+e)-1))^(1/2)*c*(I*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*
tan(f*x+e)-I*B*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c+2*I*A*(a*c)^(1/2)
*(a*c*(1+tan(f*x+e)^2))^(1/2)-2*A*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*
c-2*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c*(1+tan(f*x+e)^2))^(1/2)/(a*c)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 459 vs. \(2 (119) = 238\).

Time = 0.27 (sec) , antiderivative size = 459, normalized size of antiderivative = 2.80 \[ \int \sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2} \, dx=\frac {\sqrt {\frac {{\left (4 \, A^{2} + 4 i \, A B - B^{2}\right )} a c^{3}}{f^{2}}} {\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (-\frac {4 \, {\left (2 \, {\left ({\left (2 i \, A - B\right )} c e^{\left (3 i \, f x + 3 i \, e\right )} + {\left (2 i \, A - B\right )} c e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} + \sqrt {\frac {{\left (4 \, A^{2} + 4 i \, A B - B^{2}\right )} a c^{3}}{f^{2}}} {\left (f e^{\left (2 i \, f x + 2 i \, e\right )} - f\right )}\right )}}{{\left (-2 i \, A + B\right )} c e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (-2 i \, A + B\right )} c}\right ) - \sqrt {\frac {{\left (4 \, A^{2} + 4 i \, A B - B^{2}\right )} a c^{3}}{f^{2}}} {\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )} \log \left (-\frac {4 \, {\left (2 \, {\left ({\left (2 i \, A - B\right )} c e^{\left (3 i \, f x + 3 i \, e\right )} + {\left (2 i \, A - B\right )} c e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - \sqrt {\frac {{\left (4 \, A^{2} + 4 i \, A B - B^{2}\right )} a c^{3}}{f^{2}}} {\left (f e^{\left (2 i \, f x + 2 i \, e\right )} - f\right )}\right )}}{{\left (-2 i \, A + B\right )} c e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (-2 i \, A + B\right )} c}\right ) - 4 \, {\left ({\left (2 i \, A - B\right )} c e^{\left (3 i \, f x + 3 i \, e\right )} + {\left (2 i \, A - 3 \, B\right )} c e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{4 \, {\left (f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \]

[In]

integrate((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/4*(sqrt((4*A^2 + 4*I*A*B - B^2)*a*c^3/f^2)*(f*e^(2*I*f*x + 2*I*e) + f)*log(-4*(2*((2*I*A - B)*c*e^(3*I*f*x +
 3*I*e) + (2*I*A - B)*c*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) +
 sqrt((4*A^2 + 4*I*A*B - B^2)*a*c^3/f^2)*(f*e^(2*I*f*x + 2*I*e) - f))/((-2*I*A + B)*c*e^(2*I*f*x + 2*I*e) + (-
2*I*A + B)*c)) - sqrt((4*A^2 + 4*I*A*B - B^2)*a*c^3/f^2)*(f*e^(2*I*f*x + 2*I*e) + f)*log(-4*(2*((2*I*A - B)*c*
e^(3*I*f*x + 3*I*e) + (2*I*A - B)*c*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*
I*e) + 1)) - sqrt((4*A^2 + 4*I*A*B - B^2)*a*c^3/f^2)*(f*e^(2*I*f*x + 2*I*e) - f))/((-2*I*A + B)*c*e^(2*I*f*x +
 2*I*e) + (-2*I*A + B)*c)) - 4*((2*I*A - B)*c*e^(3*I*f*x + 3*I*e) + (2*I*A - 3*B)*c*e^(I*f*x + I*e))*sqrt(a/(e
^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))/(f*e^(2*I*f*x + 2*I*e) + f)

Sympy [F]

\[ \int \sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2} \, dx=\int \sqrt {i a \left (\tan {\left (e + f x \right )} - i\right )} \left (- i c \left (\tan {\left (e + f x \right )} + i\right )\right )^{\frac {3}{2}} \left (A + B \tan {\left (e + f x \right )}\right )\, dx \]

[In]

integrate((a+I*a*tan(f*x+e))**(1/2)*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))**(3/2),x)

[Out]

Integral(sqrt(I*a*(tan(e + f*x) - I))*(-I*c*(tan(e + f*x) + I))**(3/2)*(A + B*tan(e + f*x)), x)

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 771 vs. \(2 (119) = 238\).

Time = 0.63 (sec) , antiderivative size = 771, normalized size of antiderivative = 4.70 \[ \int \sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

-4*(4*(2*A + I*B)*c*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 4*(2*A + 3*I*B)*c*cos(1/2*arctan2(s
in(2*f*x + 2*e), cos(2*f*x + 2*e))) + 4*(2*I*A - B)*c*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 4
*(2*I*A - 3*B)*c*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 2*((2*A + I*B)*c*cos(4*f*x + 4*e) + 2*
(2*A + I*B)*c*cos(2*f*x + 2*e) + (2*I*A - B)*c*sin(4*f*x + 4*e) + 2*(2*I*A - B)*c*sin(2*f*x + 2*e) + (2*A + I*
B)*c)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*
x + 2*e))) + 1) + 2*((2*A + I*B)*c*cos(4*f*x + 4*e) + 2*(2*A + I*B)*c*cos(2*f*x + 2*e) + (2*I*A - B)*c*sin(4*f
*x + 4*e) + 2*(2*I*A - B)*c*sin(2*f*x + 2*e) + (2*A + I*B)*c)*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*
f*x + 2*e))), -sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + ((2*I*A - B)*c*cos(4*f*x + 4*e) + 2
*(2*I*A - B)*c*cos(2*f*x + 2*e) - (2*A + I*B)*c*sin(4*f*x + 4*e) - 2*(2*A + I*B)*c*sin(2*f*x + 2*e) + (2*I*A -
 B)*c)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*
x + 2*e)))^2 + 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + ((-2*I*A + B)*c*cos(4*f*x + 4*e)
+ 2*(-2*I*A + B)*c*cos(2*f*x + 2*e) + (2*A + I*B)*c*sin(4*f*x + 4*e) + 2*(2*A + I*B)*c*sin(2*f*x + 2*e) + (-2*
I*A + B)*c)*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos
(2*f*x + 2*e)))^2 - 2*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1))*sqrt(a)*sqrt(c)/(f*(-16*I*cos
(4*f*x + 4*e) - 32*I*cos(2*f*x + 2*e) + 16*sin(4*f*x + 4*e) + 32*sin(2*f*x + 2*e) - 16*I))

Giac [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1747 vs. \(2 (119) = 238\).

Time = 14.17 (sec) , antiderivative size = 1747, normalized size of antiderivative = 10.65 \[ \int \sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate((a+I*a*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

1/4*(4*(a^4*c^4 + 3*a^4*c^3 + 3*a^3*c^4 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^2*c^4 + a^4*c + a^3*c^2 + a^2*c^3 + a*c^
4 + a^3*c - 2*a^2*c^2 + a*c^3)*sqrt(-a*c)*A*e^(9*I*f*x + 9*I*e) - 7*(a^4*c^4 + 3*a^4*c^3 + 3*a^3*c^4 + 3*a^4*c
^2 + 3*a^3*c^3 + 3*a^2*c^4 + a^4*c + a^3*c^2 + a^2*c^3 + a*c^4 + a^3*c - 2*a^2*c^2 + a*c^3)*sqrt(a*c)*B*e^(9*I
*f*x + 9*I*e) - 8*(a^4*c^4 + 3*a^4*c^3 + 3*a^3*c^4 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^2*c^4 + a^4*c + a^3*c^2 + a^2
*c^3 + a*c^4 + a^3*c - 2*a^2*c^2 + a*c^3)*sqrt(-a*c)*A*e^(7*I*f*x + 7*I*e) - 26*(a^4*c^4 + 3*a^4*c^3 + 3*a^3*c
^4 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^2*c^4 + a^4*c + a^3*c^2 + a^2*c^3 + a*c^4 + a^3*c - 2*a^2*c^2 + a*c^3)*sqrt(a
*c)*B*e^(7*I*f*x + 7*I*e) - 16*(a^4*c^4 + 3*a^4*c^3 + 3*a^3*c^4 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^2*c^4 + a^4*c +
a^3*c^2 + a^2*c^3 + a*c^4 + a^3*c - 2*a^2*c^2 + a*c^3)*sqrt(-a*c)*A*e^(5*I*f*x + 5*I*e) + 12*(a^4*c^4 + 3*a^4*
c^3 + 3*a^3*c^4 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^2*c^4 + a^4*c + a^3*c^2 + a^2*c^3 + a*c^4 + a^3*c - 2*a^2*c^2 +
a*c^3)*sqrt(a*c)*B*e^(5*I*f*x + 5*I*e) - 8*(a^4*c^4 + 3*a^4*c^3 + 3*a^3*c^4 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^2*c^
4 + a^4*c + a^3*c^2 + a^2*c^3 + a*c^4 + a^3*c - 2*a^2*c^2 + a*c^3)*sqrt(-a*c)*A*e^(3*I*f*x + 3*I*e) - 12*(a^4*
c^4 + 3*a^4*c^3 + 3*a^3*c^4 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^2*c^4 + a^4*c + a^3*c^2 + a^2*c^3 + a*c^4 + a^3*c -
2*a^2*c^2 + a*c^3)*sqrt(a*c)*B*e^(3*I*f*x + 3*I*e) - 4*(a^4*c^4 + 3*a^4*c^3 + 3*a^3*c^4 + 3*a^4*c^2 + 3*a^3*c^
3 + 3*a^2*c^4 + a^4*c + a^3*c^2 + a^2*c^3 + a*c^4 + a^3*c - 2*a^2*c^2 + a*c^3)*sqrt(-a*c)*A*e^(I*f*x + I*e) +
11*(a^4*c^4 + 3*a^4*c^3 + 3*a^3*c^4 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^2*c^4 + a^4*c + a^3*c^2 + a^2*c^3 + a*c^4 +
a^3*c - 2*a^2*c^2 + a*c^3)*sqrt(a*c)*B*e^(I*f*x + I*e))/((a^4*c^3 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^4*c + 3*a^3*c^
2 + 3*a^2*c^3 + a^4 + a^3*c + a^2*c^2 + a*c^3 + a^3 - 2*a^2*c + a*c^2)*f*e^(10*I*f*x + 10*I*e) + 5*(a^4*c^3 +
3*a^4*c^2 + 3*a^3*c^3 + 3*a^4*c + 3*a^3*c^2 + 3*a^2*c^3 + a^4 + a^3*c + a^2*c^2 + a*c^3 + a^3 - 2*a^2*c + a*c^
2)*f*e^(8*I*f*x + 8*I*e) + 10*(a^4*c^3 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^4*c + 3*a^3*c^2 + 3*a^2*c^3 + a^4 + a^3*c
 + a^2*c^2 + a*c^3 + a^3 - 2*a^2*c + a*c^2)*f*e^(6*I*f*x + 6*I*e) + 10*(a^4*c^3 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^
4*c + 3*a^3*c^2 + 3*a^2*c^3 + a^4 + a^3*c + a^2*c^2 + a*c^3 + a^3 - 2*a^2*c + a*c^2)*f*e^(4*I*f*x + 4*I*e) + 5
*(a^4*c^3 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^4*c + 3*a^3*c^2 + 3*a^2*c^3 + a^4 + a^3*c + a^2*c^2 + a*c^3 + a^3 - 2*
a^2*c + a*c^2)*f*e^(2*I*f*x + 2*I*e) + (a^4*c^3 + 3*a^4*c^2 + 3*a^3*c^3 + 3*a^4*c + 3*a^3*c^2 + 3*a^2*c^3 + a^
4 + a^3*c + a^2*c^2 + a*c^3 + a^3 - 2*a^2*c + a*c^2)*f) - 1/4*(16*I*(A*sqrt(a)*c^(3/2) + I*B*sqrt(a)*c^(3/2))*
arctan(e^(I*f*x + I*e)) + I*(4*A*sqrt(a)*c^(3/2)*e^(3*I*f*x + 3*I*e) + 7*I*B*sqrt(a)*c^(3/2)*e^(3*I*f*x + 3*I*
e) + 4*A*sqrt(a)*c^(3/2)*e^(I*f*x + I*e) + 5*I*B*sqrt(a)*c^(3/2)*e^(I*f*x + I*e))/(e^(2*I*f*x + 2*I*e) + 1)^2)
/f

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+i a \tan (e+f x)} (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2} \, dx=\int \left (A+B\,\mathrm {tan}\left (e+f\,x\right )\right )\,\sqrt {a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2} \,d x \]

[In]

int((A + B*tan(e + f*x))*(a + a*tan(e + f*x)*1i)^(1/2)*(c - c*tan(e + f*x)*1i)^(3/2),x)

[Out]

int((A + B*tan(e + f*x))*(a + a*tan(e + f*x)*1i)^(1/2)*(c - c*tan(e + f*x)*1i)^(3/2), x)